DocumentCode :
2860966
Title :
Popularity-Based Selective Markov Model
Author :
Shi, Lei ; Gu, Zhimin ; Wei, Lin ; Shi, Yun
Author_Institution :
Beijing Institute of Technology, China
fYear :
2004
fDate :
20-24 Sept. 2004
Firstpage :
504
Lastpage :
507
Abstract :
Web prefetching is a promising solution used to reduce user´s latency and improve the QOS. This paper presents a popularity-based selective Markov prefetching model for predicting the forthcoming Web pages. We make use of teh Zipf´s law to model the Web objects´ popularity. An experimental evaluation of the prefetching mechanism is presented using real server logs. Our trace-driven simulation results show that the popularity-based selective. Markov prefetching model can achieve a good hit ratio with reducing the traffic load to some degree.
Keywords :
Delay; Predictive models; Prefetching; Telecommunication traffic; Web pages;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Web Intelligence, 2004. WI 2004. Proceedings. IEEE/WIC/ACM International Conference on
Print_ISBN :
0-7695-2100-2
Type :
conf
DOI :
10.1109/WI.2004.10112
Filename :
1410854
Link To Document :
بازگشت