DocumentCode :
2864416
Title :
Shortest-path kernels on graphs
Author :
Borgwardt, Karsten M. ; Kriegel, Hans-Peter
Author_Institution :
Inst. for Comput. Sci., Ludwig-Maximilians-Univ. Munich, Germany
fYear :
2005
fDate :
27-30 Nov. 2005
Abstract :
Data mining algorithms are facing the challenge to deal with an increasing number of complex objects. For graph data, a whole toolbox of data mining algorithms becomes available by defining a kernel function on instances of graphs. Graph kernels based on walks, subtrees and cycles in graphs have been proposed so far. As a general problem, these kernels are either computationally expensive or limited in their expressiveness. We try to overcome this problem by defining expressive graph kernels which are based on paths. As the computation of all paths and longest paths in a graph is NP-hard, we propose graph kernels based on shortest paths. These kernels are computable in polynomial time, retain expressivity and are still positive definite. In experiments on classification of graph models of proteins, our shortest-path kernels show significantly higher classification accuracy than walk-based kernels.
Keywords :
computational complexity; graph theory; NP-hard problem; data mining; graph data; graph kernels; polynomial time algorithm; shortest-path kernel; Computer science; Data mining; Graph theory; Kernel; Polynomials; Proteins; Statistical learning; Support vector machine classification; Support vector machines; Time measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Data Mining, Fifth IEEE International Conference on
ISSN :
1550-4786
Print_ISBN :
0-7695-2278-5
Type :
conf
DOI :
10.1109/ICDM.2005.132
Filename :
1565664
Link To Document :
بازگشت