DocumentCode :
2864679
Title :
Modeling and simulation of optical networks using a virtual GMPLS-based optical switching router
Author :
Martinez, Ralph ; McNeill, Kevin ; Wu, Wenji ; Choo, Peng Y.
Author_Institution :
Comput. Eng. Res. Lab., Arizona Univ., Tucson, AZ, USA
Volume :
1
fYear :
2003
fDate :
13-16 Oct. 2003
Firstpage :
289
Abstract :
This paper discusses the design and implementation of a simulation-based virtual optical switching router (VOSR). We built our VOSR model using the OPNET™ process models that represent the GMPLS control plane functions. The GMPLS virtual model interfaces with a forwarding plane virtual model that represents the optical switching router in an optical core network. The VOSR model gives an integrated and realistic simulation of wavelength routing, wavelength assignment, wavelength switching, dynamic label switching path (LSP) setup and tear-down, distributed routing table calculation, and blocking mechanisms light paths. The VOSR models and simulations provide a framework for the analysis and evaluation of various wavelength routing and assignment algorithms. The basic VOSR model can be used to evaluate performance of optical network core models with hundreds of optical switching nodes. The forwarding plane model can be varied and includes different types of switching fabrics. The VOSR model can be set to represent internal optical switching routers, similar to label switched router (LSRs) in an electrical network world, except they switch wavelengths not labels. The VOSR model also represents label edge routers (LERs) that drop or add wavelengths to and from electrical edge networks, such as a GigE, ATM, or SONET. Our simulation results include the blocking rate, OSPF-TE bandwidth analysis, CPU utilization, which is highly comparable to a real GMPLS optical network. As the requirements for terahertz reach back emerges in DoD systems, the VOSR models and simulation environment can be applied to analysis and evaluation of optical core networks, such as carrier networks, gigabit expansion project, the global information grid (GIG), exploratory C5 grid (EC5G) core networks, and emerging enterprise and Internet backbones. In addition, research is being conducted that applies these concepts to interconnected islands of transparency with optical and wireless domains [R. Martinez et al., June 23-26 2003]. The U. S. Army Information Systems Engineering Command, Technology Integration Center (TIC) at Fort Huachuca, AZ, sponsored this research.
Keywords :
IP networks; Internet; multiprotocol label switching; optical fibre networks; telecommunication network routing; wavelength division multiplexing; GMPLS-based optical switching router; IP routing; Internet backbones; blocking mechanisms; circuit switching; distributed routing table calculation; exploratory C5 grid core networks; generalized multiprotocol label switching; global information grid; label edge routers; label switched router; optical networks; packet switching; signaling protocols; wavelength assignment; wavelength routing; wavelength switching; Algorithm design and analysis; Analytical models; Fabrics; Modeling; Optical design; Optical fiber networks; Optical interconnections; Optical switches; Wavelength assignment; Wavelength routing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Military Communications Conference, 2003. MILCOM '03. 2003 IEEE
Print_ISBN :
0-7803-8140-8
Type :
conf
DOI :
10.1109/MILCOM.2003.1290117
Filename :
1290117
Link To Document :
بازگشت