DocumentCode :
2866982
Title :
Designing regularizers by minimizing generalization errors
Author :
Ishikawa, Masatoshi ; Yoshida, Kenta ; Amari, Smain
Author_Institution :
Kyushu Inst. of Technol.
Volume :
3
fYear :
1998
fDate :
4-9 May 1998
Firstpage :
2328
Abstract :
To improve generalization ability, a regularizer is frequently used. An approach proposed here is to regard the estimate of model parameters as a function of those without a regularizer. By minimizing the calculated generalization error, the optimal function parameters and model parameters can be obtained. In the paper linear regression is adopted to carry out theoretical computation of generalization error. Asymptotic characteristics are also analyzed. It also contributes to the discovery of a new regularizer
Keywords :
approximation theory; generalisation (artificial intelligence); minimisation; parameter estimation; statistical analysis; asymptotic characteristics; generalization errors; linear regression; model parameters; optimal function parameters; regularizers; Covariance matrix; Gaussian distribution; Linear regression; Mean square error methods; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks Proceedings, 1998. IEEE World Congress on Computational Intelligence. The 1998 IEEE International Joint Conference on
Conference_Location :
Anchorage, AK
ISSN :
1098-7576
Print_ISBN :
0-7803-4859-1
Type :
conf
DOI :
10.1109/IJCNN.1998.687225
Filename :
687225
Link To Document :
بازگشت