Title :
A New Identification Method for Hammerstein Model Based on PSO
Author :
Lin, Weixing ; Zhang, Huidi ; Liu, Peter X.
Author_Institution :
Fac. of Inf. Sci. & Technol., Ningbo Univ.
Abstract :
This paper presents a new approach of structure identification and parameter estimation for Hammerstein Model by using particle swarm optimization (PSO). The average square error criterion (ASE) has been proposed to decrease computation and obtain the true optimal structure effectively. Meanwhile, the modified identification algorithm is always converging by backward algorithm, and thus obtaining a high precision for the parameter estimation. Simulation results indicate that the ASE is an efficient order selection criterion, but Akaike´s information criterion (AIC) and minimum description length (MDL) are not good for order selection and parameter estimation in Hammerstein model
Keywords :
mean square error methods; parameter estimation; particle swarm optimisation; Hammerstein model; average square error criterion; information criterion; minimum description length; parameter estimation; particle swarm optimization; structure identification; Automation; Computational modeling; Control systems; Evolutionary computation; Genetic algorithms; Information science; Mechatronics; Nonlinear systems; Parameter estimation; Particle swarm optimization; AIC; ASE; Hammerstein Model; MDL; PSO;
Conference_Titel :
Mechatronics and Automation, Proceedings of the 2006 IEEE International Conference on
Conference_Location :
Luoyang, Henan
Print_ISBN :
1-4244-0465-7
Electronic_ISBN :
1-4244-0466-5
DOI :
10.1109/ICMA.2006.257632