Title :
Dynamic Grid Resource Scheduling Model Using Learning Agent
Author :
Zeng, Bin ; Wei, Jun ; Liu, HaiQin
Author_Institution :
Dept. of Manage., Naval Univ. of Eng., WuHan, China
Abstract :
Grid scheduling is a key problem for grid to improve the resource management and application performance. It has been proven to be a NP-hard problem for the computation of optimal grid schedules, which is responsible to allocate resources to user jobs with the objective such as minimizing the completion time or cost. Therefore, it is more difficult for Grid scheduling system to cope with the dynamically varied resource and jobs. To solve this problem, an adaptive negotiation based scheduling model is presented. The near-optimal schedules are selected by learning agents representing the resource and jobs respectively in grid. The agents can reduce the size of scheduling search space through a modified reinforcement learning algorithm, where the state-value function is improved by a numerical function approximation and the balance of efficiency and complexity is obtained by a simulated annealing algorithm. The results demonstrate that the proposed negotiation model and the learning agents based negotiation model are suitable and effective for grid environments.
Keywords :
function approximation; grid computing; learning (artificial intelligence); multi-agent systems; resource allocation; simulated annealing; NP-hard problem; adaptive negotiation based scheduling; dynamic grid resource scheduling; function approximation; learning agent; reinforcement learning algorithm; simulated annealing; state-value function; Adaptive scheduling; Approximation algorithms; Cost function; Dynamic scheduling; Grid computing; Learning; NP-hard problem; Processor scheduling; Resource management; Scheduling algorithm; Grid scheduling; Markov decision processes; learning agent; reinforcement learning;
Conference_Titel :
Networking, Architecture, and Storage, 2009. NAS 2009. IEEE International Conference on
Conference_Location :
Hunan
Print_ISBN :
978-0-7695-3741-2
DOI :
10.1109/NAS.2009.17