Title :
Effects of the user model on simulation-based learning of dialogue strategies
Author :
Schatztnann, J. ; Stuttle, Matthew N. ; Weilhammer, Karl ; Young, Steve
Author_Institution :
Dept. of Eng., Cambridge Univ.
Abstract :
Over the past decade, a variety of user models have been proposed for user simulation-based reinforcement-learning of dialogue strategies. However, the strategies learned with these models are rarely evaluated in actual user trials and it remains unclear how the choice of user model affects the quality of the learned strategy. In particular, the degree to which strategies learned with a user model generalise to real user populations has not be investigated. This paper presents a series of experiments that qualitatively and quantitatively examine the effect of the user model on the learned strategy. Our results show that the performance and characteristics of the strategy are in fact highly dependent on the user model. Furthermore, a policy trained with a poor user model may appear to perform well when tested with the same model, but fail when tested with a more sophisticated user model. This raises significant doubts about the current practice of learning and evaluating strategies with the same user model. The paper further investigates a new technique for testing and comparing strategies directly on real human-machine dialogues, thereby avoiding any evaluation bias introduced by the user model
Keywords :
interactive systems; learning (artificial intelligence); user modelling; human-machine dialogues; reinforcement-learning; user model; user simulation; Humans; Man machine systems; Performance evaluation; Space exploration; State-space methods; Stochastic processes; Supervised learning; Testing; Training data;
Conference_Titel :
Automatic Speech Recognition and Understanding, 2005 IEEE Workshop on
Conference_Location :
San Juan
Print_ISBN :
0-7803-9478-X
Electronic_ISBN :
0-7803-9479-8
DOI :
10.1109/ASRU.2005.1566539