DocumentCode :
2878478
Title :
Parameter Optimization of ϵ-Support Vector Machine by Genetic Algorithm
Author :
Yu, Qing ; Zhang, Baohua ; Wang, Jinlin
Author_Institution :
Tianjin Key Lab. of Intell. Comput. & Novel Software Technol., Tianjin Univ. of Technol., Tianjin, China
Volume :
1
fYear :
2009
fDate :
14-16 Aug. 2009
Firstpage :
540
Lastpage :
542
Abstract :
The ϵ-support vector regression machine is a promising artificial intelligence technique, in which the regression algorithm has already been used in solving the nonlinear function approach successfully. Most users select parameters for an SVM by rule of thumb, so they frequently fail to generate the optimal parameters effect for the function. This has restricted effective use of SVM to a great degree. In this paper, the authors use genetic algorithm to solve the SVM parameters optimization problem. Simulation result shows that the method has high precision and possesses certain practical application significance.
Keywords :
artificial intelligence; genetic algorithms; regression analysis; support vector machines; ϵ-support vector regression machine; SVM parameters optimization problem; artificial intelligence technique; genetic algorithm; nonlinear function approach; parameter optimization; Application software; Artificial intelligence; Computational modeling; Genetic algorithms; Laboratories; Machine intelligence; Machine learning; Software algorithms; Support vector machines; Thumb; GA; e-SVM; parameter optimization; prediction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation, 2009. ICNC '09. Fifth International Conference on
Conference_Location :
Tianjin
Print_ISBN :
978-0-7695-3736-8
Type :
conf
DOI :
10.1109/ICNC.2009.628
Filename :
5367097
Link To Document :
بازگشت