DocumentCode :
2881730
Title :
A Mutual Information Approach for Comparing LLR Metrics for Iterative Decoders
Author :
Zhang, Jianwen ; Armand, Marc A. ; Kam, Pooi Yuen
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore
fYear :
2009
fDate :
14-18 June 2009
Firstpage :
1
Lastpage :
5
Abstract :
We develop an approach to compare different log-likelihood ratio (LLR) metrics for iterative soft decoding. We show that an LLR metric for a function of the received signals is a sufficient statistic to this function about the binary channel input. We also prove that when the function belongs to a set of specific mappings, the corresponding LLR metric can feed the maximal mutual information to the decoder. For decoding low density parity check codes with the belief-propagation decoder, we develop a method to estimate the minimal average number of iterations. The results are applied to compare the Gaussian metric in and the two-symbol-observation-interval LLR metric in. The latter is shown to be superior.
Keywords :
channel coding; iterative decoding; parity check codes; LLR metrics; belief-propagation decoder; binary channel; iterative decoders; log-likelihood ratio metrics; low density parity check codes; AWGN channels; Additive white noise; Bit error rate; Communications Society; Computational modeling; Iterative decoding; Iterative methods; Mutual information; Parity check codes; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Communications, 2009. ICC '09. IEEE International Conference on
Conference_Location :
Dresden
ISSN :
1938-1883
Print_ISBN :
978-1-4244-3435-0
Electronic_ISBN :
1938-1883
Type :
conf
DOI :
10.1109/ICC.2009.5198635
Filename :
5198635
Link To Document :
بازگشت