• DocumentCode
    288358
  • Title

    Simple heuristic methods for input parameters´ estimation in neural networks

  • Author

    Tetko, Iaor V. ; Tanchuk, Vsevolod Yu ; Luik, Alexander I.

  • Author_Institution
    Dept. of Biomed., Inst. of Bioorgan. & Pet. Chem., Kiev, Ukraine
  • Volume
    1
  • fYear
    1994
  • fDate
    27 Jun-2 Jul 1994
  • Firstpage
    376
  • Abstract
    We propose simple heuristic methods that can evaluate the relevance of input parameters after completing neural network training. Besides that, these methods allow correct computation of the inputs´ contribution to each problem, when learning multiple tasks simultaneously. The estimations are done on a statistical base and are independent of learning procedures and cost functions. Our simulation on three different tasks shows that these approaches are effective
  • Keywords
    heuristic programming; learning (artificial intelligence); neural nets; parameter estimation; cost functions; heuristic methods; input parameter estimation; learning; learning procedures; multiple tasks; neural network training; neural networks; simulation; statistical base; Artificial neural networks; Biomedical computing; Chemistry; Computational modeling; Costs; Intelligent networks; Neural networks; Neurons; Parameter estimation; Petroleum;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on
  • Conference_Location
    Orlando, FL
  • Print_ISBN
    0-7803-1901-X
  • Type

    conf

  • DOI
    10.1109/ICNN.1994.374193
  • Filename
    374193