DocumentCode :
288387
Title :
Two adaptive stepsize rules for gradient descent and their application to the training of feedforward artificial neural networks
Author :
Mohandes, Mohmed ; Codrington, Craig W. ; Gelfand, Saul B.
Author_Institution :
Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA
Volume :
1
fYear :
1994
fDate :
27 Jun-2 Jul 1994
Firstpage :
555
Abstract :
Gradient descent, in the form of the well-known backpropagation algorithm, is frequently used to train feedforward neural networks, i.e. to find the weights which minimize some error measure ε. Generally, the stepsize is fixed, and represents a compromise between stability and speed of convergence. In this paper, we derive two methods for adapting the stepsize and apply them to train neural networks on parity problems of various sizes
Keywords :
backpropagation; convergence of numerical methods; feedforward neural nets; adaptive stepsize rules; backpropagation; convergence; error measure; feedforward neural networks; gradient descent; learning; stability; Artificial neural networks; Backpropagation algorithms; Convergence; Feedforward neural networks; Joining processes; Neural networks; Neurons; Newton method; Stability; Time measurement;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Neural Networks, 1994. IEEE World Congress on Computational Intelligence., 1994 IEEE International Conference on
Conference_Location :
Orlando, FL
Print_ISBN :
0-7803-1901-X
Type :
conf
DOI :
10.1109/ICNN.1994.374225
Filename :
374225
Link To Document :
بازگشت