Title :
Thermal conductivity and boundary resistance measurements of GeSbTe and electrode materials using nanosecond thermoreflectance
Author :
Bozorg-Grayeli, E. ; Reifenberg, J.P. ; Chang, K.W. ; Panzer, M. ; Goodson, K.E.
Author_Institution :
Dept. of Mech. Eng., Stanford Univ., Stanford, CA, USA
Abstract :
Phase change memory (PCM) uses rapid heating and cooling to induce switching in sub-micron memory cells. The rapid rates of heating and nanoscale dimensions require accurate modeling of thermal transport phenomena in the constituent materials. This motivates improved understanding of the thermal properties of Ge2Sb2Te5 (GST) thin films and PCM electrode materials. We report measurements of thermal conductivity and interface resistance of GST and electrode materials by applying nanosecond pump-probe thermoreflectance to multilayer structures of GST-C, GST-TiN, and GST-Ti. We measure the total thermal resistance of the stack from the transient thermal response, separating the intrinsic and boundary resistance terms using a 1-D resistor model of the stack. The intrinsic conductivities for GST are 0.20 W/(m K) for GST-C, 0.33 W/(m K) for GST-TiN, 0.27 W/(m K) for low temperature deposited GST-Ti, and 0.69 for high temperature deposited GST-Ti. The thermal boundary resistances are 27.5 m2K/GW for GST-C, 5.2 m2K/GW for GST-TiN, 49.8 m2K/GW for low temperature GST-Ti, and 11.4 m2K/GW for high temperature GST-Ti.
Keywords :
cooling; electric resistance measurement; electrodes; heating; nanotechnology; phase change memories; rapid thermal processing; semiconductor thin films; thermal conductivity; thermal resistance; thermoreflectance; 1D resistor model; GST thin films; GST-C multilayer structure; GST-TiN multilayer structure; Ge2Sb2Te5; PCM electrode material; boundary resistance measurement; cooling; interface resistance; nanosecond pump-probe thermoreflectance; phase change memory; rapid heating; submicron memory cells; thermal boundary resistance; thermal conductivity; thermal property; thermal transport phenomena; Conducting materials; Electrical resistance measurement; Electrodes; Heating; Nanostructured materials; Phase change materials; Temperature; Thermal conductivity; Thermal resistance; Thermoreflectance; GeSbTe; multilayer thin film; phase change memory; thermal interface resistance; thin films; transient thermoreflectance;
Conference_Titel :
Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2010 12th IEEE Intersociety Conference on
Conference_Location :
Las Vegas, NV
Print_ISBN :
978-1-4244-5342-9
Electronic_ISBN :
1087-9870
DOI :
10.1109/ITHERM.2010.5501263