DocumentCode :
2888519
Title :
Cramer-Rao Lower Bound for Parameter Estimation of Multiexponential Signals
Author :
Jibia, Abdussamad U. ; Salami, Momoh-Jimoh E. ; Khalifa, Othman O. ; Elfaki, Faiz A M
Author_Institution :
Kulliyyah of Eng., Int. Islamic Univ. Malaysia Jalan Gombak, Kuala Lumpur, Malaysia
fYear :
2009
fDate :
18-20 June 2009
Firstpage :
1
Lastpage :
5
Abstract :
The Cramer Rao Lower Bound on the mean square error of unbiased estimators is widely used as a measure of accuracy of parameter estimates obtained from a given data. In this paper, derivation of the Cramer-Rao Bound on real decay rates of multiexponential signals buried in white Gaussian noise is presented. It is then used to compare the efficiencies of some of the techniques used in the analysis of such signals. Specifically, two eigendecomposition-based techniques as well as SVD-ARMA (Singular Value Decomposition Autoregressive Moving Average) method are tested and evaluated. The two eigenvector methods were found to outperform SVD-ARMA with minimum norm being the most reliable at very low SNRs (Signal to Noise Ratios).
Keywords :
autoregressive moving average processes; parameter estimation; singular value decomposition; Cramer-Rao lower bound; eigendecomposition-based technique; mean square error; multiexponential signals; parameter estimation; signal to noise ratio; singular value decomposition autoregressive moving average; unbiased estimators; white Gaussian noise; Convolution; Data engineering; Deconvolution; Gaussian noise; Integral equations; Mean square error methods; Noise generators; Parameter estimation; Testing; Transient analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Systems, Signals and Image Processing, 2009. IWSSIP 2009. 16th International Conference on
Conference_Location :
Chalkida
Print_ISBN :
978-1-4244-4530-1
Electronic_ISBN :
978-1-4244-4530-1
Type :
conf
DOI :
10.1109/IWSSIP.2009.5367779
Filename :
5367779
Link To Document :
بازگشت