Title :
Analysis of Causality in Stock Market Data
Author :
Hendahewa, Chathra ; Pavlovic, Vladimir
Author_Institution :
Dept. of Comput. Sci., Rutgers Univ., Piscataway, NJ, USA
Abstract :
Analyzing the changes in volatility is an important aspect in financial data analysis leading to effective estimation of risk and discovering underlying causes of such changes. While there is a rich literature in estimating implied and stochastic volatility in financial time series using traditional econometric methods, the application of machine learning methods such as sparse regression with temporal smoothness constraints is still in its infancy. In this paper, we propose a sparse, smooth regularized regression model to infer the volatility of the data while explicitly accounting for dependencies between different companies. Using real stock market data, we construct dynamic time varying graphs for different sectors of companies to further analyze how the volatility dependency between companies within sectors vary over time. We also show how our model captures the fluctuations in volatility over different economic conditions such as financial crisis periods. Further, based on these regression estimates we show how the proposed model assists in discovering useful correlations with external factors such as oil price, inflation, S&P500 index and also with various domestic trend indices.
Keywords :
cause-effect analysis; econometrics; graph theory; inflation (monetary); learning (artificial intelligence); regression analysis; risk management; stochastic processes; stock markets; time series; S&P500 index; causality analysis; company; data volatility; domestic trend index; dynamic time varying graph; econometric method; economic condition; financial crisis period; financial data analysis; financial time series; inflation; machine learning; oil price; regression estimates; regularized regression model; risk estimation; sparse regression; stochastic volatility; stock market data; temporal smoothness constraint; volatility dependency; volatility fluctuation; Companies; Data models; Estimation; Hidden Markov models; Mathematical model; Stock markets; Time series analysis; Sparse Regression; Stock Market Analysis; Temporal Causal Graphs;
Conference_Titel :
Machine Learning and Applications (ICMLA), 2012 11th International Conference on
Conference_Location :
Boca Raton, FL
Print_ISBN :
978-1-4673-4651-1
DOI :
10.1109/ICMLA.2012.56