DocumentCode :
2895153
Title :
A novel method for lossless compression of arbitrarily shaped regions of interest in hyperspectral imagery
Author :
Hongda Shen ; Pan, W. David ; Yi Wang
Author_Institution :
Dept. of Electr. & Comput. Eng., Univ. of Alabama in Huntsville, Huntsville, AL, USA
fYear :
2015
fDate :
9-12 April 2015
Firstpage :
1
Lastpage :
6
Abstract :
We propose a novel algorithm for lossless compression of regions of interest (ROI) in hyperspectral images. The algorithm can compress arbitrarily shaped ROIs as specified by a binary map. The algorithm separates the boundary pixels from the full-context pixels within the ROI and applies Golomb-Rice encoders with different parameters on the boundary and full-context ROI pixels respectively. Experimental results show that the proposed algorithm provides larger compression than JPL´s low-complexity hyperspectral image compressing method when applied on individual ROI´s.
Keywords :
data compression; hyperspectral imaging; image coding; image segmentation; Golomb-Rice encoders; JPL low-complexity hyperspectral image compressing method; arbitrarily shaped ROl compression; arbitrarily shaped region-of-interest; binary map; boundary ROI pixels; boundary pixels; full-context ROI pixels; full-context pixels; hyperspectral imagery; lossless compression; Encoding; Arbitrary shape; ROI; context adaptive; hyperspectral image; lossless compression;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
SoutheastCon 2015
Conference_Location :
Fort Lauderdale, FL
Type :
conf
DOI :
10.1109/SECON.2015.7132982
Filename :
7132982
Link To Document :
بازگشت