Title :
Non-invasive identification of turbo-generator parameters from actual transient network data
Author :
Hutchison, Greame ; Zahawi, Bashar ; Harmer, Keith ; Gadoue, Shady ; GIAOURIS, Damian
Author_Institution :
Parsons Brinckerhoff, Newcastle upon Tyne, UK
Abstract :
Synchronous machines are the most widely used form of generators in electrical power systems. Identifying the parameters of these generators in a non-invasive way is very challenging because of the inherent non-linearity of power station performance. This study proposes a parameter identification method using a stochastic optimisation algorithm that is capable of identifying generator, exciter and turbine parameters using actual network data. An eighth order generator/turbine model is used in conjunction with the measured data to develop the objective function for optimisation. The effectiveness of the proposed method for the identification of turbo-generator parameters is demonstrated using data from a recorded network transient on a 178 MVA steam turbine generator connected to the UK´s national grid.
Keywords :
parameter estimation; steam turbines; stochastic programming; synchronous generators; turbogenerators; generator/turbine model; noninvasive identification; parameter identification method; steam turbine generator; stochastic optimisation algorithm; transient network data; turbo-generator parameters;
Journal_Title :
Generation, Transmission & Distribution, IET
DOI :
10.1049/iet-gtd.2014.0481