DocumentCode :
2899841
Title :
Estimating arterial traffic conditions using sparse probe data
Author :
Herring, Ryan ; Hofleitner, Aude ; Abbeel, Pieter ; Bayen, Alexandre
Author_Institution :
Ind. Eng. & Oper. Res., Univ. of California, Berkeley, CA, USA
fYear :
2010
fDate :
19-22 Sept. 2010
Firstpage :
929
Lastpage :
936
Abstract :
Estimating and predicting traffic conditions in arterial networks using probe data has proven to be a substantial challenge. In the United States, sparse probe data represents the vast majority of the data available on arterial roads in most major urban environments. This article proposes a probabilistic modeling framework for estimating and predicting arterial travel time distributions using sparsely observed probe vehicles. We evaluate our model using data from a fleet of 500 taxis in San Francisco, CA, which send GPS data to our server every minute. The sampling rate does not provide detailed information about where vehicles encountered delay or the reason for any delay (i.e. signal delay, congestion delay, etc.). Our model provides an increase in estimation accuracy of 35% when compared to a baseline approach for processing probe vehicle data.
Keywords :
Global Positioning System; probability; traffic information systems; GPS data; arterial networks; arterial traffic conditions; arterial travel time distributions; probabilistic modeling framework; sparse probe data; taxis; Data models; Graphical models; Hidden Markov models; Probes; Roads; Vehicles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on
Conference_Location :
Funchal
ISSN :
2153-0009
Print_ISBN :
978-1-4244-7657-2
Type :
conf
DOI :
10.1109/ITSC.2010.5624994
Filename :
5624994
Link To Document :
بازگشت