DocumentCode :
290199
Title :
Maximum likelihood scale estimation for a class of Markov random fields
Author :
Bouman, Charles A. ; Sauer, Ken
Author_Institution :
Sch. of Electr. Eng., Purdue Univ., West Lafayette, IN, USA
Volume :
v
fYear :
1994
fDate :
19-22 Apr 1994
Abstract :
This paper presents the exact maximum likelihood (ML) estimate of temperature for a class of Markov random fields (MRF) known as generalized Gaussian MRFs. The ML estimate has a simple closed form which is analogous to variance estimation for Gaussian random variables. This result is useful because the temperature parameter plays the important role of determining the amount of smoothing in problems such as Bayesian image reconstruction and restoration. Two extensions of the basic result are also given: 1) numerical scale estimation for the general class of continuous MRFs; and 2) parameter estimation from incomplete data using the EM algorithm. Preliminary numerical experiments support the usefulness of the technique
Keywords :
Bayes methods; Gaussian processes; Markov processes; image reconstruction; image restoration; maximum likelihood estimation; smoothing methods; temperature; Bayesian image reconstruction; EM algorithm; Markov random fields; generalized Gaussian Markov random fields; image restoration; maximum likelihood scale estimation; numerical scale estimation; parameter estimation; simple closed form; smoothing; temperature parameter; Bayesian methods; Image reconstruction; Image restoration; Markov random fields; Maximum likelihood estimation; Parameter estimation; Pixel; Random variables; Temperature distribution; Tomography;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech, and Signal Processing, 1994. ICASSP-94., 1994 IEEE International Conference on
Conference_Location :
Adelaide, SA
ISSN :
1520-6149
Print_ISBN :
0-7803-1775-0
Type :
conf
DOI :
10.1109/ICASSP.1994.389455
Filename :
389455
Link To Document :
بازگشت