DocumentCode :
2902389
Title :
Adaptive fuzzy-neural-network control of robot manipulator using T-S Fuzzy model design
Author :
Wai, Rong Jong ; Yang, Zhi Wei
Author_Institution :
Dept. of Electr. Eng., Yuan Ze Univ., Chungli
fYear :
2008
fDate :
1-6 June 2008
Firstpage :
90
Lastpage :
97
Abstract :
This study focuses on the development of an adaptive fuzzy-neural-network control (AFNNC) scheme for an n-link robot manipulator to achieve high-precision position tracking. In general, it is difficult to adopt a model-based design to achieve this control objective due to the uncertainties in practical applications, such as friction forces, external disturbances and parameter variations. In order to cope with this problem, an AFNNC system is investigated without the requirement of prior system information. In this model-free control scheme, a continuous-time Takagi-Sugeno (T-S) dynamic fuzzy model with on-line learning ability is constructed for representing the system dynamics of an n-link robot manipulator. Then, a four-layer fuzzy-neural-network (FNN) is utilized for estimating nonlinear dynamic functions in this fuzzy model. Moreover, the AFNNC law and adaptive tuning algorithms for FNN weights are established in the sense of Lyapunov stability analyses to ensure the network convergence as well as stable control performance. Numerical simulations of a two-link robot manipulator actuated by DC servomotors are given to verify the effectiveness and robustness of the proposed AFNNC methodology. In addition, the superiority of the proposed control scheme is indicated in comparison with proportional-differential control (PDC), Takagi-Sugeno-Kang (TSK) type fuzzy-neural-network control (T-FNNC), robust-neural-fuzzy-network control (RNFNC), and fuzzy-model-based control (FMBC) systems.
Keywords :
Lyapunov methods; adaptive control; continuous time systems; fuzzy control; manipulators; neurocontrollers; nonlinear control systems; stability; Lyapunov stability; T-S fuzzy model design; adaptive fuzzy-neural-network control; continuous-time Takagi-Sugeno dynamic fuzzy model; high-precision position tracking; nonlinear dynamic functions; robot manipulator; Adaptive control; Control systems; Fuzzy control; Fuzzy neural networks; Manipulator dynamics; Nonlinear dynamical systems; Programmable control; Proportional control; Robot control; Robot sensing systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on
Conference_Location :
Hong Kong
ISSN :
1098-7584
Print_ISBN :
978-1-4244-1818-3
Electronic_ISBN :
1098-7584
Type :
conf
DOI :
10.1109/FUZZY.2008.4630349
Filename :
4630349
Link To Document :
بازگشت