Title :
Finding fuzzy-rough reducts with fuzzy entropy
Author :
Parthaláin, Neil Mac ; Jensen, Richard ; Shen, Qiang
Author_Institution :
Dept. of Comput. Sci., Aberystwyth Univ., Aberystwyth
Abstract :
Dataset dimensionality is undoubtedly the single most significant obstacle which exasperates any attempt to apply effective computational intelligence techniques to problem domains. In order to address this problem a technique which reduces dimensionality is employed prior to the application of any classification learning. Such feature selection (FS) techniques attempt to select a subset of the original features of a dataset which are rich in the most useful information. The benefits can include improved data visualisation and transparency, a reduction in training and utilisation times and potentially, improved prediction performance. Methods based on fuzzy-rough set theory have demonstrated this with much success. Such methods have employed the dependency function which is based on the information contained in the lower approximation as an evaluation step in the FS process. This paper presents three novel feature selection techniques employing fuzzy entropy to locate fuzzy-rough reducts. This approach is compared with two other fuzzy-rough feature selection approaches which utilise other measures for the selection of subsets.
Keywords :
data analysis; data visualisation; fuzzy set theory; rough set theory; computational intelligence techniques; data transparency; data visualisation; dataset dimensionality; feature selection techniques; fuzzy entropy; fuzzy-rough set theory; Computational intelligence; Computer science; Data mining; Data visualization; Entropy; Fuzzy sets; Humans; Machine learning; Set theory; Training data;
Conference_Titel :
Fuzzy Systems, 2008. FUZZ-IEEE 2008. (IEEE World Congress on Computational Intelligence). IEEE International Conference on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-1818-3
Electronic_ISBN :
1098-7584
DOI :
10.1109/FUZZY.2008.4630537