DocumentCode :
2906322
Title :
Noisy input/output system identification using cumulants and the Steiglitz-McBride algorithm
Author :
Anderson, John M M ; Giannakis, Georgios B.
Author_Institution :
Dept. of Electr. Eng., Virginia Univ., Charlottesville, VA, USA
fYear :
1991
fDate :
4-6 Nov 1991
Firstpage :
608
Abstract :
By transforming the input/output system identification problem into the high signal to noise ratio (SNR) cumulant domain, the Steiglitz-McBride algorithm is extended, yielding an autocumulant and cross-cumulant based approach for autoregressive moving average (ARMA) modeling. The autocumulant approach requires that the ARMA parameters be estimated by first estimating the cumulants of the ARMA parameters. The cross-cumulant formulation permits the ARMA parameters to be estimated directly. Possible convergence points and convergence issues are investigated. Simulations are presented to illustrate the performance of these algorithms
Keywords :
parameter estimation; signal processing; ARMA parameters; SNR cumulant domain; Steiglitz-McBride algorithm; autocumulant approach; autoregressive moving average; convergence points; cross-cumulant formulation; input/output system identification; parameter estimation; signal processing; signal to noise ratio; Colored noise; Convergence; Econometrics; Frequency estimation; Gaussian noise; Instruments; Noise cancellation; Parameter estimation; Pollution measurement; System identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Signals, Systems and Computers, 1991. 1991 Conference Record of the Twenty-Fifth Asilomar Conference on
Conference_Location :
Pacific Grove, CA
ISSN :
1058-6393
Print_ISBN :
0-8186-2470-1
Type :
conf
DOI :
10.1109/ACSSC.1991.186520
Filename :
186520
Link To Document :
بازگشت