DocumentCode :
2907141
Title :
StreamMR: An Optimized MapReduce Framework for AMD GPUs
Author :
Elteir, Marwa ; Lin, Heshan ; Feng, Wu-chun ; Scogland, Tom
Author_Institution :
City of Sci. Researches & Technol. Applic., Egypt
fYear :
2011
fDate :
7-9 Dec. 2011
Firstpage :
364
Lastpage :
371
Abstract :
MapReduce is a programming model from Google that facilitates parallel processing on a cluster of thousands of commodity computers. The success of MapReduce in cluster environments has motivated several studies of implementing MapReduce on a graphics processing unit (GPU), but generally focusing on the NVIDIA GPU. Our investigation reveals that the design and mapping of the MapReduce framework needs to be revisited for AMD GPUs due to their notable architectural differences from NVIDIA GPUs. For instance, current state-of-the-art MapReduce implementations employ atomic operations to coordinate the execution of different threads. However, atomic operations can implicitly cause inefficient memory access, and in turn, severely impact performance. In this paper, we propose Streamer, an OpenCL MapReduce framework optimized for AMD GPUs. With efficient atomic-free algorithms for output handling and intermediate result shuffling, Stream MR is superior to atomic-based MapReduce designs and can outperform existing atomic-free MapReduce implementations by nearly five-fold on an AMD Radeon HD 5870.
Keywords :
graphics processing units; parallel processing; workstation clusters; AMD GPU; NVIDIA GPU; OpenCL MapReduce framework; StreamMR; atomic-free algorithm; cluster environments; commodity computers; graphics processing unit; optimized MapReduce framework; parallel processing; programming model; Graphics processing unit; High definition video; Instruction sets; Kernel; Mars; Optimization; Programming; AMD GPU; GPGPU; MapCG; MapReduce; Mars; OpenCL; atomics; parallel computing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Parallel and Distributed Systems (ICPADS), 2011 IEEE 17th International Conference on
Conference_Location :
Tainan
ISSN :
1521-9097
Print_ISBN :
978-1-4577-1875-5
Type :
conf
DOI :
10.1109/ICPADS.2011.131
Filename :
6121299
Link To Document :
بازگشت