DocumentCode :
2908852
Title :
Active reduction of audible noise exciting radial force-density waves in induction motors
Author :
Franck, D. ; van der Giet, M. ; Hameyer, K.
Author_Institution :
Inst. of Electr. Machines, RWTH Aachen Univ., Aachen, Germany
fYear :
2011
fDate :
15-18 May 2011
Firstpage :
1213
Lastpage :
1218
Abstract :
This paper presents an approach to the active reduction of radial force-density waves. Additional flux-density waves are generated by the injection of additional and particular low-power current harmonics. With these flux-density waves a force-density countershaft to an acoustic annoying radial force density wave is generated. In this contribution a mathematical model to estimate the amplitude, frequency and phase shift of the required current harmonic is presented. The prediction of the phase-shift is strongly dependent on saturation effects and on the interaction of the additionally imposed and existing flux-density waves. Therefore, a finite element (FE) experiment set is proposed to increase the accuracy of the analytically predicted phase angle. The active injection of force-density countershafts is performed, analyzed and evaluated. The assessment is performed based on FE simulations. The authors found that the injection of force-density countershafts is applicable for force-density waves with any circumferential oscillation modes and frequency in general. However, the consideration of oscillation modes is limited to r = 0, ±2p, ±3p and ±4p in order to keep the additional losses in the machine within an acceptable limit. The proposed approach is robust concerning the accuracy of the phase shift of the additionally imposed current harmonic.
Keywords :
acoustic noise; active noise control; amplitude estimation; finite element analysis; frequency estimation; induction motor drives; magnetic flux; phase estimation; FE simulation; active audible noise reduction; amplitude estimation; circumferential oscillation mode; finite element experiment set; flux-density waves; force-density countershaft; frequency estimation; induction motor; low-power current harmonics; mathematical model; phase shift estimation; radial force density wave; Air gaps; Harmonic analysis; Iron; Mathematical model; Rotors; Stator windings; Acoustic optimization; audible noise; induction machine; noise and vibration;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electric Machines & Drives Conference (IEMDC), 2011 IEEE International
Conference_Location :
Niagara Falls, ON
Print_ISBN :
978-1-4577-0060-6
Type :
conf
DOI :
10.1109/IEMDC.2011.5994776
Filename :
5994776
Link To Document :
بازگشت