DocumentCode :
2909138
Title :
Supervisory particle-swarm-optimization control design for maglev transportation system
Author :
Wai, Rong-Jong ; Chuang, Kun-Lun ; Lee, Jeng-Dao
Author_Institution :
Dept. of Electr. Eng., Yuan Ze Univ., Chungli
fYear :
2008
fDate :
1-6 June 2008
Firstpage :
97
Lastpage :
104
Abstract :
This study focuses on the design of an on-line levitation and propulsion control for a magnetic-levitation (maglev) transportation system. First, the dynamic model of a maglev transportation system including levitated electromagnets and a propulsive linear induction motor (LIM) based on the concepts of mechanical geometry and motion dynamics is developed Then, a total sliding-mode (TS) control strategy is introduced, and the concept of TS control is incorporated into particle swarm optimization (PSO) to form an on-line TSPSO control framework with varied inertial weights for preserving the robust control characteristics and reducing the chattering control phenomena of TS control. In this TSPSO control scheme, a PSO control system is utilized to be the major controller, and the stability can be indirectly ensured by the concept of TS control without strict constraint and detailed system knowledge. In order to further directly stabilize the system states around a predefined bound region and effectively accelerate the searching speed of the PSO control, a supervisory mechanism is embedded into the TSPSO control to constitute a supervisory TSPSO (STSPSO) control strategy. The effectiveness of the proposed control schemes for the maglev transportation system is verified by numerical simulations, and the superiority of the STSPSO control scheme is indicated in comparison with the TS and TSPSO control strategies.
Keywords :
linear induction motors; magnetic levitation; particle swarm optimisation; propulsion; robust control; variable structure systems; chattering control; levitated electromagnets; maglev transportation system; magnetic-levitation transportation system; mechanical geometry; motion dynamics; online levitation control; online propulsion control; propulsive linear induction motor; robust control; stability; supervisory particle-swarm-optimization control design; total sliding-mode control; Control design; Control systems; Electromagnetic modeling; Electromagnets; Magnetic levitation; Motion control; Propulsion; Sliding mode control; Solid modeling; Transportation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-1822-0
Electronic_ISBN :
978-1-4244-1823-7
Type :
conf
DOI :
10.1109/CEC.2008.4630782
Filename :
4630782
Link To Document :
بازگشت