DocumentCode :
2910013
Title :
Demonstration of enhanced Monte Carlo computation of the fisher information for complex problems
Author :
Xumeng Cao
Author_Institution :
Dept. of Appl. Math. & Stat., Johns Hopkins Univ., Baltimore, MD, USA
fYear :
2013
fDate :
17-19 June 2013
Firstpage :
4003
Lastpage :
4008
Abstract :
The Fisher information matrix summarizes the amount of information in a set of data relative to the quantities of interest. There are many applications of the information matrix in statistical modeling, system identification and parameter estimation. This short paper reviews a feedback-based method and an independent perturbation approach for computing the information matrix for complex problems, where a closed form of the information matrix is not achievable. We show through numerical examples how these methods improve the accuracy of the estimate of the information matrix compared to the basic resampling-based approach. Some relevant theory is summarized.
Keywords :
Monte Carlo methods; parameter estimation; statistical analysis; Fisher information matrix; complex problems; enhanced Monte Carlo computation; feedback-based method; independent perturbation approach; parameter estimation; statistical modeling; system identification; Accuracy; Computational modeling; Estimation; Monte Carlo methods; Numerical models; Symmetric matrices; Vectors; Monte Carlo simulation; feedback information; simultaneous perturbation; the Fisher information matrix;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2013
Conference_Location :
Washington, DC
ISSN :
0743-1619
Print_ISBN :
978-1-4799-0177-7
Type :
conf
DOI :
10.1109/ACC.2013.6580452
Filename :
6580452
Link To Document :
بازگشت