DocumentCode :
2910603
Title :
Using Rich Linguistic and Contextual Information for Tree-Based Statistical Machine Translation
Author :
Hung, Bui Thanh ; Nguyen Le Minh ; Shimazu, Akira
Author_Institution :
Grad. Sch. of Inf. Sci., Japan Adv. Inst. of Sci. & Technol., Ishikawa, Japan
fYear :
2011
fDate :
15-17 Nov. 2011
Firstpage :
189
Lastpage :
192
Abstract :
This paper presents an approach to select appropriate translation rules to improve phrase-reordering of tree-based statistical machine translation. We propose new features with rich linguistic and contextual information. We give a new algorithm to extract features, use maximum entropy to combine rich linguistic and contextual information and integrate these features into the tree-based SMT model (Moses-chart). We obtain substantial improvements in performance for tree-based translation from Vietnamese to English.
Keywords :
language translation; maximum entropy methods; Moses-chart model; Vietnamese-English translation; contextual information; feature extraction; maximum entropy; phrase-reordering; rich linguistic information; translation rule; tree-based statistical machine translation; Computational linguistics; Decoding; Entropy; Feature extraction; Pragmatics; Syntactics; Training; Linguistic and Contextual Information; Maximum Entropy Model; Phrase Reordering; Tree-based SMT;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Asian Language Processing (IALP), 2011 International Conference on
Conference_Location :
Penang
Print_ISBN :
978-1-4577-1733-8
Type :
conf
DOI :
10.1109/IALP.2011.60
Filename :
6121500
Link To Document :
بازگشت