DocumentCode :
2911065
Title :
Particle filtering for state and parameter estimation in gas turbine engine fault diagnostics
Author :
Daroogheh, Najmeh ; Meskin, N. ; Khorasani, K.
Author_Institution :
Dept. of Electr. & Comput. Eng., Concordia Univ., Montreal, QC, Canada
fYear :
2013
fDate :
17-19 June 2013
Firstpage :
4343
Lastpage :
4349
Abstract :
In this paper, a novel method for a time-varying parameter estimation technique using particle filters is proposed based on the concept of Recursive Prediction Error (RPE). According to the proposed method, a parallel structure for both state and parameter estimation in a nonlinear non-Gaussian system is developed. The performance of the developed framework is evaluated in an application to the gas turbine engine state and health parameters estimation by using different scenarios. The developed method is identified to be applicable for fault diagnosis of an engine system while it is subjected to concurrent and simultaneous loss of effectiveness faults in the system components.
Keywords :
condition monitoring; engines; fault diagnosis; gas turbines; parameter estimation; particle filtering (numerical methods); RPE concept; engine fault diagnostics; engine health parameter estimation; gas turbine engine; nonlinear nonGaussian system; particle filtering; recursive prediction error concept; state estimation; time-varying parameter estimation technique; Approximation methods; Engines; Equations; Kernel; Mathematical model; Parameter estimation; Turbines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2013
Conference_Location :
Washington, DC
ISSN :
0743-1619
Print_ISBN :
978-1-4799-0177-7
Type :
conf
DOI :
10.1109/ACC.2013.6580508
Filename :
6580508
Link To Document :
بازگشت