DocumentCode :
2911587
Title :
SLAM process using Polynomial Extended Kalman Filter: Experimental assessment
Author :
Chanier, François ; Checchin, Paul ; Blanc, Christophe ; Trassoudaine, Laurent
Author_Institution :
Lab. des Sci. et Mater. pour l´´Electron. et d´´Autom., Univ. de Clermont-Ferrand, Aubiere
fYear :
2008
fDate :
17-20 Dec. 2008
Firstpage :
365
Lastpage :
370
Abstract :
This paper deals with the simultaneous localization and map building (SLAM) problem using an implementation of the polynomial extended Kalman filter (PEKF). The proposed PEKF implementation is a filtering algorithm which is a polynomial transformation of state evolution and measurement equations. The performances of the algorithm have been evaluated through simulations. The comparison with the standard extended Kalman filter shows that the PEKF provides more consistent estimates in a SLAM framework. Experiments on real data are presented too.
Keywords :
Kalman filters; SLAM (robots); nonlinear filters; SLAM process; polynomial extended Kalman filter; polynomial transformation; simultaneous localization and map building; Automatic control; Nonlinear equations; Nonlinear filters; Nonlinear systems; Polynomials; Robotics and automation; Robots; Simultaneous localization and mapping; State estimation; Vehicles; Polynomial Extended Kalman Filter (PEKF); Simultaneous Localization and Mapping (SLAM); consistency;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International Conference on
Conference_Location :
Hanoi
Print_ISBN :
978-1-4244-2286-9
Electronic_ISBN :
978-1-4244-2287-6
Type :
conf
DOI :
10.1109/ICARCV.2008.4795547
Filename :
4795547
Link To Document :
بازگشت