Title :
Face recognition based on neighbourhood discriminant preserving embedding
Author :
Teoh, Andrew Beng Jin ; Han, Pang Ying
Author_Institution :
Sch. of Electr. & Electron. Eng., Yonsei Univ., Seoul
Abstract :
Neighborhood Preserving Embedding (NPE) is an unsupervised linear dimensionality reduction technique which attempts to solve the ldquoout of samplerdquo problem in Locally Linear Embedding (LLE). This is done by introducing a linear transform matrix into LLE, and hence NPE can be perceived as a linear approximation to LLE. In this paper, we modify the original NPE for face recognition by embedding prior class information in the process of neighborhood selection. Intuitively, neighboring points are kept intact if they have the same class label, while avoid points of other classes from entering the neighborhood. We proved experimentally in three face databases, ie. ORL, PIE and FRGC, and with comparisons with other linear and non-linear feature extractors, the intuition underlying the inclusion of class information in NPE works out very advantageously for achieving high recognition performance.
Keywords :
approximation theory; face recognition; feature extraction; learning (artificial intelligence); matrix algebra; face recognition; linear approximation; linear feature extractors; linear transform matrix; locally linear embedding; manifold learning; neighbourhood discriminant preserving embedding; nonlinear feature extractors; unsupervised linear dimensionality reduction technique; Automatic control; Data mining; Face recognition; Feature extraction; Linear approximation; Principal component analysis; Robotics and automation; Scattering; Space technology; Spatial databases; Face recognition; feature extraction; manifold learning; neigbourhood discrimination;
Conference_Titel :
Control, Automation, Robotics and Vision, 2008. ICARCV 2008. 10th International Conference on
Conference_Location :
Hanoi
Print_ISBN :
978-1-4244-2286-9
Electronic_ISBN :
978-1-4244-2287-6
DOI :
10.1109/ICARCV.2008.4795557