DocumentCode :
2912407
Title :
Cultural MOPSO: A cultural framework to adapt parameters of multiobjective particle swarm optimization
Author :
Daneshyari, Moayed ; Yen, Gary G.
Author_Institution :
Dept. of Electr. & Comput. Eng., Oklahoma State Univ., Stillwater, OK
fYear :
2008
fDate :
1-6 June 2008
Firstpage :
1325
Lastpage :
1332
Abstract :
Multiobjective particle swarm optimization algorithms (MOPSO) have been widely used to solve multiobjective optimization problems. Most of MOPSOs use fixed momentum and acceleration for all particles throughout the evolutionary process. In this paper, we introduce a cultural framework to adapt the flight parameters of the MOPSO namely momentum, personal, and global acceleration for each individual particle based upon the various types of knowledge in belief space, specifically situational knowledge, normative knowledge, and topographical knowledge. Movement of the particles using the adapted parameters helps the MOPSO to perform efficiently and effectively in multiobjective optimization.
Keywords :
evolutionary computation; particle swarm optimisation; cultural MOPSO; evolutionary process; flight parameters; multiobjective optimization problems; multiobjective particle swarm optimization; normative knowledge; situational knowledge; topographical knowledge; Cultural differences; Evolutionary computation; Particle swarm optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-1822-0
Electronic_ISBN :
978-1-4244-1823-7
Type :
conf
DOI :
10.1109/CEC.2008.4630967
Filename :
4630967
Link To Document :
بازگشت