Title :
Self-Organizing Maps and Scale-Invariant Maps in Echo State Networks
Author :
Basterrech, S. ; Fyfe, Colin ; Rubino, Gerardo
Author_Institution :
INRIA - Rennes Bretagne-Atlantique, Rennes, France
Abstract :
In the last years a new approach for designing and training artificial Recurrent Neural Network (RNN) have been investigated under the name of Reservoir Computing (RC). One important model in the field of RC has been developed under the name of Echo State Networks (ESNs). Traditionally, an ESN uses a RNN with random untrained parameters called the reservoir. The Self-Organizing Map (SOM) and the Scale Invariant Map (SIM) are two methods of topographic maps which have been used in different tasks of unsupervised learning. Recently, new works show that is effective using the SOM to set values of the reservoir parameters. The primary goal of this work is to improve the performance of ESN using the another method SIM. Here, we present the description of these two topographic map methods and the way to apply its on the ESN initialization. We specify an original algorithm to set the reservoir weights using the SOM and SIM. Furthermore, we use artificial data set to compare the use of topographic maps to initialize the ESN with random initialization. Overall, our results show the aptitude of SIM and SOM to set the reservoir parameters.
Keywords :
recurrent neural nets; self-organising feature maps; unsupervised learning; artificial recurrent neural network training; echo state network; random untrained parameter; reservoir computing; scale-invariant maps; self-organizing maps; topographic maps; unsupervised learning; Neurons; Recurrent neural networks; Reservoirs; Self organizing feature maps; Time series analysis; Training; Training data; Echo State Networks; Reservoir Computing; Scale Invariant Maps; Self-Organizing Maps; Times Series Prediction; Topographic Maps;
Conference_Titel :
Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on
Conference_Location :
Cordoba
Print_ISBN :
978-1-4577-1676-8
DOI :
10.1109/ISDA.2011.6121637