Title :
Contextualizing object detection and classification
Author :
Song, Zheng ; Chen, Qiang ; Huang, Zhongyang ; Hua, Yang ; Yan, Shuicheng
Author_Institution :
Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore
Abstract :
In this paper, we investigate how to iteratively and mutually boost object classification and detection by taking the outputs from one task as the context of the other one. First, instead of intuitive feature and context concatenation or postprocessing with context, the so-called Contextualized Support Vector Machine (Context-SVM) is proposed, where the context takes the responsibility of dynamically adjusting the classification hyperplane, and thus the context-adaptive classifier is achieved. Then, an iterative training procedure is presented. In each step, Context-SVM, associated with the output context from one task (object classification or detection), is instantiated to boost the performance for the other task, whose augmented outputs are then further used to improve the former task by Context-SVM. The proposed solution is evaluated on the object classification and detection tasks of PASCAL Visual Object Challenge (VOC) 2007 and 2010, and achieves the state-of-the-art performance.
Keywords :
image classification; iterative methods; object detection; support vector machines; ubiquitous computing; PASCAL visual object challenge; augmented outputs; classification hyperplane; context concatenation; context-SVM; context-adaptive classifier; contextualized support vector machine; iterative training procedure; object classification; object detection contextualization; Context; Context modeling; Feature extraction; Kernel; Object detection; Support vector machines; Training;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4577-0394-2
DOI :
10.1109/CVPR.2011.5995330