DocumentCode :
2913081
Title :
Parameter identification of induction motors using Ant Colony Optimization
Author :
Chen, Zhenfeng ; Zhong, Yanru ; Li, Jie
Author_Institution :
Sch. of Autom. & Inf. Eng., Xi´´an Univ. of Technol., Xian
fYear :
2008
fDate :
1-6 June 2008
Firstpage :
1611
Lastpage :
1616
Abstract :
In this paper, the ant colony optimization (ACO) is introduced and applied to the parameter identification of an induction motor for vector control. The error between the actual stator current output of an induction motor and the stator current output of the model is used as the criterion to correct the model parameters, so as to identify all the parameters of an induction motor. Digital simulations are conducted on speed-varying operation with no load The ACO is compared with the genetic algorithm (GA) and adaptive genetic algorithm (AGA). Consequently, the ACO is shown to acquire more precise parameter values and need much less computing time than the GA and AGA.
Keywords :
induction motors; machine control; optimisation; parameter estimation; stators; ant colony optimization; induction motor; parameter identification; stator current output; vector control; Ant colony optimization; Costs; Evolutionary computation; Induction motors; Instruction sets; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on Computational Intelligence). IEEE Congress on
Conference_Location :
Hong Kong
Print_ISBN :
978-1-4244-1822-0
Electronic_ISBN :
978-1-4244-1823-7
Type :
conf
DOI :
10.1109/CEC.2008.4631007
Filename :
4631007
Link To Document :
بازگشت