DocumentCode :
2913721
Title :
Learning Bayesian Network structures using Multiple Offspring Sampling
Author :
Santos, Edimilson B dos ; Ebecken, Nelson F F ; Hruschka, Estevam R., Jr.
Author_Institution :
COPPE/UFRJ, Fed. Univ. of Rio de Janeiro., Rio de Janeiro, Brazil
fYear :
2011
fDate :
22-24 Nov. 2011
Firstpage :
362
Lastpage :
367
Abstract :
Variable Ordering (VO) plays an important role when inducing Bayesian Networks (BNs). Previous works in the literature suggest that it is worth pursuing the use of evolutionary strategies for identifying a suitable VO, when learning a Bayesian Network structure from data. This paper proposes a hybrid adaptive algorithm named VOMOS (Variable Ordering Multiple Offspring Sampling) where the new individuals are created using a set of recombination operators (crossover and mutation operators). Experiments performed in datasets revealed that the VOMOS approach is promising and tends to generate consistent and representative BNs.
Keywords :
Bayes methods; evolutionary computation; mathematical operators; sampling methods; Bayesian network structure learning; crossover operator; evolutionary strategy; hybrid adaptive algorithm; mutation operator; recombination operator; variable ordering multiple offspring sampling; Algorithm design and analysis; Bayesian methods; Convergence; Evolutionary computation; Genetic algorithms; Genetics; Search problems; Bayesian Networks; Multiple Offspring Sampling; Variable Ordering;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems Design and Applications (ISDA), 2011 11th International Conference on
Conference_Location :
Cordoba
ISSN :
2164-7143
Print_ISBN :
978-1-4577-1676-8
Type :
conf
DOI :
10.1109/ISDA.2011.6121682
Filename :
6121682
Link To Document :
بازگشت