DocumentCode :
2915200
Title :
ICE: an automated statistical approach to identifying endmembers in hyperspectral images
Author :
Berman, Mark ; Kiiveri, Harri ; Langerstrom, R. ; Ernst, Andreas ; Dunne, Rob ; Huntington, Jon
Author_Institution :
CSIRO Math. & Inf. Sci., Macquarie Univ. Campus, North Ryde, NSW, Australia
Volume :
1
fYear :
2003
fDate :
21-25 July 2003
Firstpage :
279
Abstract :
Several of the more important endmember-finding algorithms for hyperspectral data are discussed and their shortcomings highlighted. A new algorithm, ICE, which attempts to overcome these shortcomings is introduced. An example of is use is given.
Keywords :
geophysical signal processing; geophysical techniques; image processing; spectral analysis; ICE; automated statistical approach; endmember-finding algorithms; endmembers identification; hyperspectral data; hyperspectral images; iterated constrained endmembers; Australia; Hyperspectral imaging; Ice; Layout; Noise shaping; Packaging; Pixel; Reflectivity; Solid modeling; Spectral shape;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2003. IGARSS '03. Proceedings. 2003 IEEE International
Print_ISBN :
0-7803-7929-2
Type :
conf
DOI :
10.1109/IGARSS.2003.1293750
Filename :
1293750
Link To Document :
بازگشت