Title :
Affine-invariant diffusion geometry for the analysis of deformable 3D shapes
Author :
Raviv, Dan ; Bronstein, Alexander M. ; Bronstein, Michael M. ; Kimmel, Ron ; Sochen, Nir
Author_Institution :
Dept. of Comput. Sci., Technion - Israel Inst. of Technol., Haifa, Israel
Abstract :
We introduce an (equi-)affine invariant diffusion geometry by which surfaces that go through squeeze and shear transformations can still be properly analyzed. The definition of an affine invariant metric enables us to construct an invariant Laplacian from which local and global geometric structures are extracted. Applications of the proposed framework demonstrate its power in generalizing and enriching the existing set of tools for shape analysis.
Keywords :
Laplace transforms; affine transforms; feature extraction; shape recognition; shear deformation; affine-invariant diffusion geometry; deformable 3D shape analysis; equiaffine invariant diffusion geometry; global geometric structure extraction; invariant Laplacian; local geometric structure extraction; shear transformation; Eigenvalues and eigenfunctions; Geometry; Heating; Kernel; Measurement; Shape; Tensile stress;
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Conference_Location :
Providence, RI
Print_ISBN :
978-1-4577-0394-2
DOI :
10.1109/CVPR.2011.5995486