DocumentCode :
2917933
Title :
Graph matching through entropic manifold alignment
Author :
Escolano, Francisco ; Hancock, Edwin ; Lozano, Miguel
Author_Institution :
Univ. of Alicante, Alicante, Spain
fYear :
2011
fDate :
20-25 June 2011
Firstpage :
2417
Lastpage :
2424
Abstract :
In this paper we cast the problem of graph matching as one of non-rigid manifold alignment. The low dimensional manifolds are from the commute time embedding and are matched though coherent point drift. Although there have been a number of attempts to realise graph matching in this way, in this paper we propose a novel information-theoretic measure of alignment, the so-called symmetrized normalized-entropy-square variation. We successfully test this dissimilarity measure between manifolds on a a challenging database. The measure is estimated by means of the bypass Leonenko entropy functional. In addition we prove that the proposed measure induces a positive definite kernel between the probability density functions associated with the manifolds and hence between graphs after deformation. In our experiments we find that the optimal embedding is associated to the commute time distance and we also find that our approach, which is purely topological, outperforms several state-of-the-art graph-based algorithms for point matching.
Keywords :
graph theory; image matching; object recognition; Leonenko entropy functional; coherent point drift; entropic manifold alignment; graph based algorithms; graph matching; information theoretic measure; low dimensional manifold; nonrigid manifold alignment; positive definite kernel; probability density functions; symmetrized normalized entropy square variation; Approximation methods; Databases; Entropy; Green´s function methods; Kernel; Laplace equations; Manifolds;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on
Conference_Location :
Providence, RI
ISSN :
1063-6919
Print_ISBN :
978-1-4577-0394-2
Type :
conf
DOI :
10.1109/CVPR.2011.5995583
Filename :
5995583
Link To Document :
بازگشت