DocumentCode :
2917946
Title :
Prediction of Concrete Carbonization Depth Based on DE-BP Neural Network
Author :
Bu, Narui ; Yang, Guoli ; Zhao, Hui
Volume :
3
fYear :
2009
fDate :
21-22 Nov. 2009
Firstpage :
240
Lastpage :
243
Abstract :
Based on the DE-BP (Back Propagation-Differential Evolution) neural network, the predicting model of concrete carbonization depth is presented. The precision of the model is checked using the monitoring data. The comparisons between the predicted results of the three models (BP model, GA-BP model and DE-BP model) and the monitoring data show that the precision of the present algorithm is higher with the maximum relative error being 2.8%.
Keywords :
backpropagation; civil engineering computing; concrete; genetic algorithms; neural nets; BP model; DE-BP model; GA-BP model; back propagation differential evolution neural network; concrete carbonization depth prediction; monitoring data; Biological cells; Civil engineering; Concrete; Information technology; Intelligent networks; Mathematical model; Monitoring; Neural networks; Predictive models; Production; DE-BP neural network; concrete carbonization depth; prediction;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on
Conference_Location :
Nanchang
Print_ISBN :
978-0-7695-3859-4
Type :
conf
DOI :
10.1109/IITA.2009.252
Filename :
5369464
Link To Document :
بازگشت