DocumentCode :
2918299
Title :
An arrival-based framework for human mobility modeling
Author :
Karamshuk, Dmytro ; Boldrini, Chiara ; Conti, Marco ; Passarella, Andrea
Author_Institution :
IMT Lucca, Lucca, Italy
fYear :
2012
fDate :
25-28 June 2012
Firstpage :
1
Lastpage :
9
Abstract :
Modeling human mobility is crucial in the performance analysis and simulation of mobile ad hoc networks, where contacts are exploited as opportunities for peer-to-peer message forwarding. The current approach to human mobility modeling has been based on continuously modifying models, trying to embed in them the newest features of mobility properties (e.g., visiting patterns to locations or inter-contact times) as they came up from trace analysis. As a consequence, typically these models are neither flexible (i.e., features of mobility cannot be changed without changing the model) nor controllable (i.e., the exact shape of mobility properties cannot be controlled directly). In order to take into account the above requirements, in this paper we propose a mobility framework whose goal is, starting from the stochastic process describing the arrival patterns of users to locations, to generate pairwise inter-contact times and aggregate inter-contact times featuring a predictable probability distribution. We validate the proposed framework by means of simulations. In addition, assuming that the arrival process of users to locations can be described by a Bernoulli process, we mathematically derive a closed form for the pairwise and aggregate inter-contact times, proving the controllability of the proposed approach in this case.
Keywords :
controllability; message passing; mobile ad hoc networks; mobility management (mobile radio); peer-to-peer computing; statistical distributions; stochastic processes; Bernoulli process; aggregate inter-contact times; arrival-based framework; continuously modifying models; controllability; human mobility modeling; mobile ad hoc network simulation; pairwise inter-contact times; peer-to-peer message forwarding; performance analysis; predictable probability distribution; stochastic process; trace analysis; user location arrival patterns; Aggregates; Analytical models; Communities; Humans; Mathematical model; Mobile ad hoc networks; Stochastic processes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
World of Wireless, Mobile and Multimedia Networks (WoWMoM), 2012 IEEE International Symposium on a
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-4673-1238-7
Electronic_ISBN :
978-1-4673-1237-0
Type :
conf
DOI :
10.1109/WoWMoM.2012.6263683
Filename :
6263683
Link To Document :
بازگشت