DocumentCode :
2918500
Title :
A New Clustering Algorithm Based on PSO with the Jumping Mechanism of SA
Author :
Dong, Jinxin ; Qi, Minyong
Author_Institution :
Coll. of Comput. Sci., Liaocheng Univ., Liaocheng, China
Volume :
3
fYear :
2009
fDate :
21-22 Nov. 2009
Firstpage :
61
Lastpage :
64
Abstract :
A new clustering algorithm is proposed based on particle swarm optimization (PSO). The main idea of the new algorithm is to solve clustering problem using the fast search ability of the particle swarm optimization, each particle is composed of a cluster center vector, and represents a possible solution of the clustering problem. To escape from local optimum, a new idea is proposed, that is the neighborhood structure of individual optimum is enriched using the probabilistic jumping property of the simulated annealing (SA). The individual optimum of the particles is disturbed randomly, that is the data pattern clustering label is changed randomly, so the search ability of the global space is enhanced. The experimental results on different datasets show that the new algorithm has better performance than particle swarm optimization and K-means algorithm, has better global convergence, and it is an effective clustering algorithm.
Keywords :
particle swarm optimisation; pattern clustering; simulated annealing; K-means algorithm; PSO; clustering algorithm; jumping mechanism; particle swarm optimization; simulated annealing; Ant colony optimization; Application software; Clustering algorithms; Computer science; Educational institutions; Information technology; Particle swarm optimization; Partitioning algorithms; Simulated annealing; Space technology; clustering; local optimum; particle swarm optimization; simulated annealing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Information Technology Application, 2009. IITA 2009. Third International Symposium on
Conference_Location :
Nanchang
Print_ISBN :
978-0-7695-3859-4
Type :
conf
DOI :
10.1109/IITA.2009.82
Filename :
5369494
Link To Document :
بازگشت