DocumentCode :
2923212
Title :
A Greedy Search Approach to Co-clustering Sparse Binary Matrices
Author :
Angiulli, Fabrizio ; Cesario, Eugenio ; Pizzuti, Clara
Author_Institution :
ICAR-CNR, Rende
fYear :
2006
fDate :
Nov. 2006
Firstpage :
363
Lastpage :
370
Abstract :
A co-clustering algorithm for large sparse binary data matrices, based on a greedy technique and enriched with a local search strategy to escape poor local maxima, is proposed. The algorithm starts with an initial random solution and searches for a locally optimal solution by successive transformations that improve a quality function which combines row and column means together with the size of the co-cluster. Experimental results on synthetic and real data sets show that the method is able to find significant co-clusters
Keywords :
data analysis; greedy algorithms; pattern clustering; search problems; sparse matrices; coclustering sparse binary matrices; greedy search approach; greedy technique; local maxima; local search strategy; sparse binary data matrices; Artificial intelligence; Data analysis; Information analysis; Information retrieval; Itemsets; Sparse matrices; Tiles;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Tools with Artificial Intelligence, 2006. ICTAI '06. 18th IEEE International Conference on
Conference_Location :
Arlington, VA
ISSN :
1082-3409
Print_ISBN :
0-7695-2728-0
Type :
conf
DOI :
10.1109/ICTAI.2006.10
Filename :
4031920
Link To Document :
بازگشت