DocumentCode :
2923482
Title :
Recent results on sparse principle component analysis
Author :
Cai, Tony T. ; Zongming Ma ; Yihong Wu
Author_Institution :
Dept. of Stat., Univ. of Pennsylvania, Philadelphia, PA, USA
fYear :
2013
fDate :
15-18 Dec. 2013
Firstpage :
181
Lastpage :
183
Abstract :
Principal component analysis (PCA) is one of the most commonly used statistical procedures for dimension reduction. This paper presents some recent results on the minimax estimation of principal subspaces in high dimensions. Under mild technical conditions, we characterize the minimax risk for estimating the principal subspace under the quadratic loss within absolute constant factors.
Keywords :
data reduction; minimax techniques; principal component analysis; risk management; PCA; Sparse Principle Component Analysis; dimension reduction; minimax risk; multivariate analysis; principal subspace minimax estimation; quadratic loss; statistical procedures; Conferences; Convergence; Covariance matrices; Eigenvalues and eigenfunctions; Estimation; Principal component analysis; Sociology;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2013 IEEE 5th International Workshop on
Conference_Location :
St. Martin
Print_ISBN :
978-1-4673-3144-9
Type :
conf
DOI :
10.1109/CAMSAP.2013.6714037
Filename :
6714037
Link To Document :
بازگشت