DocumentCode :
2923757
Title :
A Minimum Distance Bound for 1-Generator Quasi-Cyclic Codes
Author :
Woungang, Isaac ; Misra, Sudip ; Sadeghian, Alireza ; Ferworn, Alexander
Author_Institution :
Ryerson Univ., Toronto
fYear :
2007
fDate :
6-8 June 2007
Firstpage :
156
Lastpage :
159
Abstract :
Let Fq be the finite field of q elements and A=Fq[X]/(Xm-1) be the algebra of q-ary polynomials modulo Xm-1. The q-ary 1-generator quasi-cyclic (QC) code of block length ml, of index a divisor of l, with generator a(X) = (ai(X))i=0 l-1 is the A-cyclic submodule V of Al defined as Aa(X) = {(lambda(X)ai(X))0 l-1, lambda(X) isin A} under the module operation lambda(X) Sigmai=0 l-1 ai(X)Yi = Sigmai=0 l-1lambda(X)ai(X)Yi, where lambda(X) isin A and lambda(X)ai(X) is reduced modulo Xm-1. Under the simplifying assumption (m, q) = 1, we determine a lower bound on the minimum distance of V. The result is achieved by determining a lower bound on the minimal number of not null blocks in a typical codeword of V.
Keywords :
Galois fields; cyclic codes; polynomials; 1-generator quasi-cyclic codes; finite field; minimum distance bound; q-ary polynomials; Algebra; Computer science; Galois fields; Linear code; Polynomials;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2007. CWIT '07. 10th Canadian Workshop on
Conference_Location :
Edmonton, Alta.
Print_ISBN :
1-4244-0769-9
Electronic_ISBN :
1-4244-0769-9
Type :
conf
DOI :
10.1109/CWIT.2007.375724
Filename :
4259778
Link To Document :
بازگشت