DocumentCode :
2926242
Title :
Multiscale Polynomial Autoregressive Model for Monthly Sardines Catches Forecasting
Author :
Rodriguez, Nibaldo ; Duran, Orlando
Author_Institution :
Pontificia Univ. Catolica de Valparaiso, Valparaiso, Chile
fYear :
2009
fDate :
24-26 Nov. 2009
Firstpage :
1524
Lastpage :
1528
Abstract :
The aim of this paper is to find a model to forecast 1-month ahead monthly sardines catches using a multivariate polynomial model combined with multi-scale stationary wavelet decomposition. The observed monthly sardines catches are decomposed into various sub-series employing wavelet decomposition and then appropriate sub-series are used as inputs to the autoregressive forecasting model. The forecasting strategy parameters are estimated using the least squares method and we find that the proposed forecaster achieves 99% of the explained variance with a MAPE below 7.6%.
Keywords :
aquaculture; autoregressive processes; fishing industry; least squares approximations; polynomials; regression analysis; wavelet transforms; MAPE; autoregressive forecasting model; least squares method; monthly sardines catches forecasting; multiscale polynomial autoregressive model; multiscale stationary wavelet decomposition; Aquaculture; Frequency; Least squares methods; Neural networks; Parameter estimation; Polynomials; Predictive models; Technology forecasting; Wavelet analysis; Wavelet transforms; forecasting; regression; wavelet analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Sciences and Convergence Information Technology, 2009. ICCIT '09. Fourth International Conference on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-5244-6
Electronic_ISBN :
978-0-7695-3896-9
Type :
conf
DOI :
10.1109/ICCIT.2009.241
Filename :
5369937
Link To Document :
بازگشت