DocumentCode :
2926315
Title :
A Classifying Web Page Templates Model Based on Fuzzy K-Means Clustering Method
Author :
Lee, Huey-Ming ; Mao, Ching-Hao ; Shih, Yao-jen ; Chen, Pin-jen ; Hsu, Mu-hsiu ; Su, Jin-Shieh
Author_Institution :
Chinese Culture Univ., Taipei
fYear :
2006
fDate :
24-26 July 2006
Firstpage :
1
Lastpage :
6
Abstract :
Thousands of web pages rapidly expand every day, and the diversifications of web templates make us difficult to extract the contents of web pages. In this study, we proposed a classifying web page templates model based on fuzzy k-means clustering method. This model can automatically collect the web pages, generate several kinds of web pages templates, provide the different kinds of web content (e.g. hyperlink, image, text) templates for users´ requests. Via the proposed model, we can not only classify the web pages templates more easily and efficiently, but also extract the appropriate web information on demands conveniently.
Keywords :
Internet; Web sites; classification; fuzzy set theory; pattern clustering; text analysis; Internet; Web content; Web image; Web information; Web page template classification; Web text; content extraction; fuzzy k-means clustering; hyperlink; Automation; Clustering methods; Data mining; Electronic mail; HTML; Information management; Internet; Web pages; Web sites; World Wide Web; Fuzzy k-means clustering; Web page template;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automation Congress, 2006. WAC '06. World
Conference_Location :
Budapest
Print_ISBN :
1-889335-33-9
Type :
conf
DOI :
10.1109/WAC.2006.376020
Filename :
4259936
Link To Document :
بازگشت