DocumentCode :
2926746
Title :
A Neural Data Fusion Model for Hydrological Forecasting
Author :
Neagoe, Victor-Emil ; Tudoran, Cristian ; Strugaru, Gabriel
Author_Institution :
Politehnica Univ. of Bucharest, Bucharest
fYear :
2006
fDate :
24-26 July 2006
Firstpage :
1
Lastpage :
6
Abstract :
A model of adaptive data fusion flow forecasting using concurrent neural networks (ADAFCON) is presented. It uses a fusion of rainfall and discharge data . The system consists of three backpropagation neural networks. Each neural module is trained to estimate a specific class of data dynamics: low, medium and high gradients. The decision fusion module uses a concurrential strategy. The model is applied to forecast the Piura river flow (discharge).
Keywords :
backpropagation; forecasting theory; geophysics computing; hydrological techniques; rain; rivers; sensor fusion; Piura river flow forecasting; adaptive data fusion flow forecasting; backpropagation neural networks; concurrent neural networks; concurrential strategy; data dynamics; decision fusion module; hydrological forecasting; neural data fusion model; rainfall-discharge data fusion; Automation; Backpropagation; DH-HEMTs; Delta modulation; Floods; Information technology; Neural networks; Predictive models; Rivers; Technology forecasting; Concurrent Neural Networks; Data Fusion; Flow Forecasting; Hydrological Modelling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Automation Congress, 2006. WAC '06. World
Conference_Location :
Budapest
Print_ISBN :
1-889335-33-9
Type :
conf
DOI :
10.1109/WAC.2006.376049
Filename :
4259965
Link To Document :
بازگشت