Title :
Systematic Study of Vth controllability using ALD-Y2O3, La2O3, and MgO2 layers with HfSiON/metal gate first n-MOSFETs for hp 32 nm bulk devices
Author :
Kamiyama, Satoshi ; Ishikawa, Dai ; Kurosawa, Etsuo ; Nakata, Hiroyuki ; Kitajima, Masashi ; Ootuka, Minoru ; Aoyama, Takayuki ; Nara, Yasuo ; Ohji, Yuzuru
Author_Institution :
Res. Dept. 1, Semicond. Leading Edge Technol. (Selete), Inc., Tsukuba
Abstract :
We present a systematic examination of Vth controllability using Y2O3, La2O3, and MgO2 layers by atomic-layer-deposition (ALD) technology with HfSiON/TaSiN gate first stacks for half-pitch (hp) 32 nm-node metal gated bulk devices. By employing base-Y2O3 layers of 1 mono-layer (ML< 0.5 nm), ultra-thin equivalent-oxide-thickness (EOT: 0.72 nm) can be achieved with excellent Vth controllability (|DeltaVth|> 130 mV), high electron carrier mobility, and very high drain current (> 1100 muA/mum) at a low Ioff value (100 nA/mum). Moreover, the positive-bias-temperature-instability (PBTI) over a 10-year lifetimes can be readily achieved with Vg= +1.0 V at 125degC.
Keywords :
MOSFET; electron mobility; hafnium compounds; lanthanum compounds; magnesium compounds; silicon compounds; tantalum compounds; yttrium compounds; HfSiON-TaSiN-La2O3; HfSiON-TaSiN-MgO2; HfSiON-TaSiN-Y2O3; HfSiON/metal gate first n-MOSFETs; Vth controllability; atomic-layer-deposition layers; drain current; high electron carrier mobility; metal gated bulk devices; positive-bias-temperature-instability; size 0.72 nm; size 32 nm; temperature 125 degC; ultrathin equivalent-oxide-thickness; Atomic layer deposition; Capacitance-voltage characteristics; Channel bank filters; Controllability; Degradation; Electrodes; Electron mobility; High K dielectric materials; Thickness control; Wet etching;
Conference_Titel :
Electron Devices Meeting, 2008. IEDM 2008. IEEE International
Conference_Location :
San Francisco, CA
Print_ISBN :
978-1-4244-2377-4
Electronic_ISBN :
8164-2284
DOI :
10.1109/IEDM.2008.4796608