Title :
Real-time pedestrian and vehicle detection in video using 3D cues
Author :
Lee, Ping-Han ; Chiu, Tzu-Hsuan ; Lin, Yen-Liang ; Hung, Yi-Ping
Author_Institution :
Dept. of Comput. Sci. & Inf. Eng., Nat. Taiwan Univ., Taipei, Taiwan
fDate :
June 28 2009-July 3 2009
Abstract :
Existing pedestrian and vehicle detection algorithms use 2D cues of objects, such as pixel values, color, texture, shape information or motion. The use of 3D cues in object detection, on the other hand, is not well studied in the literature. In this paper, we propose an efficient algorithm that detects pedestrian and vehicle using their 3D cues. The proposed algorithm first detects moving objects in a video frame using a background modeling technique. For each moving object, we extract its width and height in 3D space, with the aid of the intrinsic and extrinsic parameters of the camera monitoring the scene. To estimate the camera parameters, we apply a calibration-free method, which simply requires users to specify six vertices on a cuboid in the scene. Then based on its 3D cues, a object is verified whether it is a pedestrian(vehicle) or not by the class-specific Support Vector Machine (SVM). In our experiment, the proposed algorithm achieves a precision of 88.2% (89.1%) for pedestrian(vehicle) detection, at 32 frame-per-second on average upon five testing sequences.
Keywords :
image motion analysis; object detection; real-time systems; road vehicles; support vector machines; video signal processing; 3D cues; background modeling technique; calibration-free method; camera monitoring; camera parameter estimation; intrinsic-extrinsic parameter; moving object detection; real-time pedestrian detection algorithm; support vector machine; vehicle detection algorithm; video frame; Cameras; Computer vision; Condition monitoring; Layout; Object detection; Shape; Support vector machines; Surveillance; Vehicle detection; Vehicles; pedestrian detection; realtime object detection; vehicle detection;
Conference_Titel :
Multimedia and Expo, 2009. ICME 2009. IEEE International Conference on
Conference_Location :
New York, NY
Print_ISBN :
978-1-4244-4290-4
Electronic_ISBN :
1945-7871
DOI :
10.1109/ICME.2009.5202571