• DocumentCode
    2931900
  • Title

    Statistical path loss parameter estimation and positioning using RSS measurements

  • Author

    Nurminen, Henri ; Talvitie, Jukka ; Ali-Loytty, Simo ; Muller, Philipp ; Lohan, E. ; Piche, Robert ; Renfors, Markku

  • Author_Institution
    Tampere Univ. of Technol., Tampere, Finland
  • fYear
    2012
  • fDate
    3-4 Oct. 2012
  • Firstpage
    1
  • Lastpage
    8
  • Abstract
    An efficient Bayesian method for off-line estimation of the position and the path loss model parameters of a base station is presented. Two versions of three different on-line positioning methods are tested using real data collected from a cellular network. The tests confirm the superiority of the methods that use the estimated path loss parameter distributions compared to the conventional methods that only use point estimates for the path loss parameters. Taking the uncertainties into account is computationally demanding, but the Gauss-Newton optimization methods is shown to provide a good approximation with computational load that is reasonable for many real-time solutions.
  • Keywords
    cellular radio; optimisation; parameter estimation; statistical analysis; Gauss-Newton optimization methods; RSS measurements; base station; model parameters; path loss parameter distributions; real-time solutions; statistical path loss parameter estimation; statistical path positioning; Antenna measurements; Computational modeling; Covariance matrix; Estimation; Loss measurement; Power measurement; Propagation losses; cellular network; outdoor positioning; path loss model; received signal strength; statistical estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Ubiquitous Positioning, Indoor Navigation, and Location Based Service (UPINLBS), 2012
  • Conference_Location
    Helsinki
  • Print_ISBN
    978-1-4673-1908-9
  • Type

    conf

  • DOI
    10.1109/UPINLBS.2012.6409754
  • Filename
    6409754