DocumentCode :
2931941
Title :
Background-free direction-sensitive neutron detector
Author :
Ahlen, Steven ; Dujmic, Denis ; Fisher, Peter ; Inglis, Andrew ; Tomita, Hidefumi ; Wellenstein, Hermann
Author_Institution :
Phys. Dept., Boston Univ., Boston, MA, USA
fYear :
2009
fDate :
7-10 June 2009
Firstpage :
1
Lastpage :
6
Abstract :
The detection and measurements of properties of neutrons are of great importance in many fields of research, including neutron scattering and radiography, measurements of solar and cosmic ray neutron flux, measurements of neutron interaction cross sections, monitoring of neutrons at nuclear facilities, oil exploration, and searches for fissile weapons of mass destruction. Many neutron detectors are plagued by large backgrounds from x-rays and gamma rays, and most current neutron detectors lack single-event energy sensitivity or any information on neutron directionality. Even the best detectors are limited by cosmic ray neutron backgrounds. All applications would benefit from improved neutron detection sensitivity and improved measurements of neutron properties. Here we show data from a new type of detector that can be used to determine neutron flux, energy distribution, and direction of neutron motion. The detector is free of backgrounds from x-rays, gamma rays, beta particles, and relativistic singly charged particles. It is relatively insensitive to cosmic ray neutrons because of their distinctive angular and energy distributions. It is sensitive to thermal neutrons, fission spectrum neutrons, and high energy neutrons, with detection features distinctive for each energy range. It is capable of determining the location of a source of fission neutrons based on characteristics of elastic scattering of neutrons by helium nuclei. A portable detector could identify one gram of reactor grade plutonium, one meter away, with less than one minute of observation time.
Keywords :
gas scintillation detectors; ionisation chambers; neutron detection; neutron flux; particle track visualisation; background free neutron detector; direction sensitive neutron detector; fission neutron source; neutron detection sensitivity; neutron directionality information; neutron elastic scattering; neutron energy distribution; neutron flux; neutron motion direction; single event energy sensitivity; Gamma ray detection; Gamma ray detectors; Gamma rays; Monitoring; Neutron spin echo; Nuclear measurements; Petroleum; Radiography; X-ray detection; X-ray detectors; Fissile materials; imaging time-projection-chambers; neutron detectors; nuclear reactions;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advancements in Nuclear Instrumentation Measurement Methods and their Applications (ANIMMA), 2009 First International Conference on
Conference_Location :
Marseille
Print_ISBN :
978-1-4244-5207-1
Electronic_ISBN :
978-1-4244-5208-8
Type :
conf
DOI :
10.1109/ANIMMA.2009.5503785
Filename :
5503785
Link To Document :
بازگشت